
On Map Matching of Wireless Positioning Data:
A Selective Look-ahead Approach

Matt Weber1,*, Ling Liu1, Kipp Jones2, Michael J. Covington1, Lama Nachman3, and Peter Pesti1

1Georgia Institute of Technology
2Skyhook Wireless
3Intel Corporation

ABSTRACT
Wireless Positioning Systems (WPS) are popular alterna-
tive localization methods, especially in dense urban areas
where GPS has known limitations. Map-matching (MM)
has been used as an approach to improve the accuracy of the
estimated locations of WiFi Access Points (APs), and thus
the accuracy of a wireless positioning system. Large-scale
wireless positioning differs from satellite based positioning
in at least two aspects: First, wireless positioning systems
typically derive the location estimates based on war-driving
access point (AP) data. Second, the locations of the AP
beacons are not generally known at the same precision as
that of the satellite locations. This results in lower accu-
racy and a lower confidence factor in the use of wireless
positioning. This paper presents a fast selective look-ahead
map-matching technique, called SLAMM. Existing MM al-
gorithms developed for real-time location tracking of a mov-
ing vehicle are ill-suited for matching large collections of war-
driving data due to the time complexity. Another unique
feature of SLAMM is the map-matching of critical location
samples in an AP trace to the road network before matching
non-critical samples. Our experiments over a real dataset of
70 million AP samples show that SLAMM is accurate and
significantly faster than the traditional MM approaches.

1. INTRODUCTION
Large-scale WPS typically determine the position of a

WiFi enabled mobile client based on the geographical loca-
tions of its observed wireless APs. War-driving is a popular
means of mapping observed WiFi APs to locations via GPS.
For example, the WPS solution provided by Skyhook Wire-
less[1] delivers location estimates based on a user’s surround-
ing wireless APs and cellular towers. Skyhook Wireless em-
ploys numerous drivers in different regions of the world to

∗To whom correspondence should be addressed. Email: mattweb@
gatech.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

drive around and record the signal strengths of observed APs
and cellular towers along with the corresponding GPS read-
ings, a process known as war-driving. The result is roughly
1,400 hours of GPS data uploaded daily.

MM refers to a process of matching location samples to
a road network. In this paper, we focus on matching very
large datasets of trajectories with location samples collected
at once per second. We argue that MM can assist in both
the accuracy of the final location estimation and the manage-
ment of the war-driving data collection process. However, to
achieve these enhancements, both MM accuracy and speed
are required. Thus, the unique challenge for matching large
AP datasets is twofold: First, we need a high quality MM
algorithm that can utilize available global knowledge to in-
crease the accuracy of AP location data, while leveraging the
speed of incremental matching algorithms.Second, the MM
approach should make use of the road network topology to
enhance the accuracy of incremental techniques, and must
be resilient to both errors in the location measurement and
error in the road network.

With these design objectives in mind, we develop a se-
lective look-ahead MM approach, called SLAMM. SLAMM
employs three filtering techniques that step by step identify
and match critical location samples before matching the rest.
In addition, the matched samples are given a road segment
based quality estimate unlike any in current literature.

We compare the speed and accuracy of SLAMM to a tra-
ditional incremental MM approach from a real AP dataset
of 70 million location samples, and show that the SLAMM
three-level progressive filtering based MM approach is accu-
rate and significantly faster than traditional approaches.

The remainder of the paper is structured as follows. In
section 2 we discuss the unique challenges with matching
commercial war-driving data. In section 3 we provide an
overview of existing work and review two basic MM ap-
proaches. In section 4 we present SLAMM in detail. In
section 5 we evaluate SLAMM by comparing it to two basic
MM approaches. In section 6 we discuss related work, and
finally in section 7 we give our conclusion and discussion
for future work.

2. WAR-DRIVING CHALLENGES
The study conducted in this paper uses the war-driving

dataset collected by a fleet of drivers for Skyhook Wireless,
who systematically drive in tens of thousands of cities and
towns worldwide to scan for 802.11 WiFi APs. The data

mattweb@gatech.edu
mattweb@gatech.edu

is logged using proprietary scanning software from Skyhook
Wireless. WiFi localization errors stem from several orthog-
onal sources, including the GPS measurement errors during
the AP dataset collection via war-driving, the errors due
to the subsequent radio propagation method, ranging from
simple triangulation of signals [5, 9] to more complex hierar-
chical Bayesian sensor models [12], and the overall coverage
of radio beacons. MM is a popular means for correcting
GPS error and has been shown to improve WPS accuracy.
[10] In addition, MM can also help to automate war-driver
progress management.

With respect to MM, commercial war-driving poses three
key challenges that are not uncommon among existing work,
map error, GPS measurement error and the large volume of
resulting data. Map error can exist as missing, or incorrectly
digitized, roads in the network. Measurment error refers to
incorrect position measurements and is often at its worst
in poor weather and in parts of cities with densely placed
buildings. The large volume of data, as mentioned in the
introduction, is in the form of about 1400 hours of war-
driving data collected daily.

These common problems, however, are greatly exacer-
bated when combined with the unique challenge introduced
by fundamentally different driving patterns exhibited by war-
drivers. Namely, to maximize WPS accuracy, drivers must
attempt to traverse every road in an assigned area.

Understandably, map error may not be a priority for many
existing MM algorithms because modern digital maps are
largely accurate, particularly with arterial roads. However,
when every road is followed, every map error is exposed.
In addition, frequent u-turns are made and privately owned
routes are followed (ie: parking lots, drive-throughs) that are
not on the map. These occurances have an adverse effect on
algorithms that rely on road network topology, as we’ll show
later.

A similar problem arises with measurement error. While
not true everywhere, measurement error is routinely severe
in certain parts of larger cities. Ironically, these areas are
among those where WPS has the highest potential for use.
Because a single drive will often collect data with both high
and low measurement error, the unique challenge is to pro-
vide a way to identify and seperate the bad data from the
good, even if they are not so far apart.

Finally the large volume of data requires all of these prob-
lems to be handled with a fast algorithm. Even though we do
not have to match in real-time as the samples are collected,
the traditionally more accurate global algorithms, discussed
later, are either too slow, too reliant on network topology
rules, or both.

3. MAP MATCHING
Given a trajectory T and a road network N known to

constrain the travel of T , MM is the process of first identi-
fying an arc A ∈ N on which T is believed to have traveled
at time t and then assigning a precise position along A to
which T (t) should be matched. A formal definition of MM
can be found in [16, 8, 3].

One common way to classify the existing MM algorithms
is as either incremental or global. Incremental algorithms
attempt to determine the most likely arc, one sample at a
time, by following the trajectory. Global algorithms find all
of the possible paths that could have been taken by the tra-
jectory and attempt to match the entire trajectory to one of

the paths based on some similarity measure. When match-
ing location samples to an arc, two types of information from
the map data are generally used: (i) the geometric informa-
tion based on the shape of the arcs, and (ii) the topology of
road network such as how the arcs are connected. [3]

Algorithms that rely soley on geometric data are typically
incremental. Many incremental algorithms also utilize the
road network topology to constrain or weight the possible
arcs based on connectivity to previously matched arcs. For
example, [4] uses a recursive “look-ahead” which only con-
siders those arcs that branch out n arcs from the previous
match. One problem with this approach is the number pos-
sible paths growing rapidly, though on a smaller scale than
with global algorithms discussed later. Another problem
with this approach is the reliance on the previous match to
choose the next candidate arcs. That is, if an arc is chosen
incorrectly in the previous step, it is possible that the next
set of candidate arcs will not contain the correct arc.

In the case of global algorithms, topology is required to
determine all of the possible paths that a trajectory could
follow. Different global algorithms vary the ways they make
use of topology. For example, one approach [17] weights each
arc in a road network based on distance to the trajectory,
and then use Dijkstra’s shortest path algorithm to determine
the best path. Other approaches [2, 4, 6] attempt to find
a path in the network, which best fits the entire trajectory.
The general problem with these approaches are the high run-
times associated with the curve distance measures and the
exponentially growing number of corresponding paths.

Next we describe two basic MM approaches, Distance MM
and Look-Ahead MM.

3.1 Distance Map Matching
Distance Map Matching (DMM) is an incremental geo-

metric only matching algorithm which simply matches each
sample to the closest arc in the given road network. More
specifically, for each sample Si, the distance to each arc in
the road network is measured. The arc that has the smallest
distance to Si is chosen as the selected arc and Si is then
“snapped” to that arc.

Figure 1 illustrates two common problems with this ap-
proach. First, as the trajectory crosses an intersection, the
samples are closer to the road perpendicular to the direction
of travel and are therefore matched incorrectly. We refer to
this type of error as cross-track error. Second, as the trajec-
tory comes across parallel roads, either measurement error
or map error causes the samples to be closer to the incorrect
arc for some period, causing incorrect matches. We call this
type of error along-track error [10].

Figure 1: Simple MM problems

Using the topology of the road network is the most im-

mediate way to deal with these types of errors. By forcing
the chosen arcs to form a valid path, arcs that would lead
nowhere can be ruled out, even if they are the closest. Next
we describe one such approach.

3.2 Look-Ahead Map Matching (LAMM)
When using the phrase“Look-Ahead” in terms of MM it is

important to make the distinction between arc and sample
look-ahead.

Arc look-ahead is a common technique in incremental MM
algorithms that uses the road network topology to select
future candidate paths by branching out n arcs from the arc
that was previously selected for a match. As pointed out
in [10], one problem with arc look-ahead is that the number
of candidate paths can grow quite large depending on the
value set for n.

Figure 2: An example of LAMM parameters.

Sample look-ahead, on the other hand, is a less common
technique that looks ahead k future samples, from the sam-
ple currently being matched, to make a more informed deci-
sion about which candidate arc to choose. Figure 2 shows
an example of this technique where k = 5. In the figure, Si

is the current sample being matched, Si+1, Si+2,...,Si+5 are
the future samples, and all of the arcs in the image can be
considered candidate arcs. From the image it is apparent
that the samples are following the horizontal path labeled
e1, however Si is actually closer to e2. In this example,
DMM would suffer from cross-track error by matching Si to
e2. With sample look-ahead, however, one of many existing
line distance measures could be used to correctly match Si

to e1 using the future samples to define the curve.
The LAMM algorithm proposed in [10] uses both sample

and arc look-ahead, matching each sample of a trace to a
road network incrementally. Here we briefly describe this
algorithm and conclude with an illustrated example.

For brevity, we begin assuming that the procedure has be-
gun and that the previous sample has been matched to arc
Ac. The next sample is matched by finding all possible paths
that extend from Ac out the arc look-ahead value, match-
ing Si, Si+1,..., Si+k to each path and taking the Haus-
dorff distance from the original samples to their matched
counterparts. The chosen path is the one with the smallest
Hausdorff distance and the new chosen arc Ac is selected
as the arc in the chosen path that is closest to Si, as il-
lustrated in figure 3. In the top left image we see a road
network with edges A,B,C,D,E,F and a set of ordered sam-
ples. Ac is the previously chosen arc, Si−3, Si−2, and Si−1

are matched at Mi−3, Mi−2, and Mi−1 respectively. This
example assumes an arc look-ahead value of two and a sam-
ple look-ahead value of six. The top right shows the first
potential path, A,C,F. The samples Si to Si+6 have been
matched to the closest points along A,C,F illustrated by the
points Mi to Mi+6. The next step is to take the Hausdorff
distance between the original points in S and the correspond-
ing matched point in M. The two bottom images show the
same process for edges A,B,D and edges A,B,E. it is appar-

ent from the images that the correct path is A,B,E and the
Hausdorff distance would be the lowest for this path as well.
After choosing this path, the next chosen arc is the one in
the chosen path that is the closest to Si, which in this case
is B.

Figure 3: Simple LAMM

In theory, LAMM is an effective and fast way to deal with
cross track and along track errors. However, when dealing
with real data, sample look-ahead can be expensive and arc
look-ahead is sensitive to errors in the road network.

With sample look-ahead, the look-ahead value must be
set appropriately to be effective. Ideally the value would be
high enough to see samples that would be matched to at
least one arc ahead of the previously matched arc. However,
the look-ahead value is also the number of times each sample
will be considered plus one. For example, with a look-ahead
value of three, each sample will be included in an evaluation
four times, three times as one of the look-ahead samples and
once as the current sample. This obviously has an impact
on the runtime.

Using arc look-ahead makes the algorithm highly sensitive
to errors in the road network. Simply having one arc missing
in the road network can cause several samples to be matched
incorrectly before the disconnect is identified and the can-
didate arcs are reset. This problem may be infrequent for
many MM applications, however in the case of war-driving,
the drivers are required to traverse every road that they find.
This results in many missing roads being followed.

Next we present a MM algorithm that leverages the topol-
ogy of the road network but is less sensitive to road network
errors. Furthermore, our algorithm not only removes the
redundancy of sample look-ahead, but can actually match
many of the samples without even considering them.

4. SELECTIVE LOOK-AHEAD MM (SLAMM)
We describe the design of our selective look-ahead MM ap-

proach in this section, starting with the design principles and
then presenting the three progressive filtering techniques.

4.1 Design Principles
Most existing MM algorithms, both incremental and global,

are forced to check each sample in the trajectory. In the case
of navigation applications, this is due to the real-time con-
straint, namely the samples must be matched as they arrive

from the GPS device to enable real-time routing algorithms.
Another reason that existing MM algorithms process every
sample in the trajectory is a low sampling rate that results in
a sparse trajectory. In this situation every sample is needed
to handle the increased sampling error associated with the
low sampling rate. For example, a rate of one sample ev-
ery 15 seconds might have 4 samples collected for a road
that the driver spent a single minute on, where a rate of 1
sample per second would result in 60 samples for the same
road. Clearly, neither of these constraints exist in the Sky-
hook Wireless dataset which is collected at a one second
sampling rate.

Many of the fastest and most accurate MM algorithms
that exist today have proven their results on datasets with
a 15 - 30 second sampling rate. If we were to plug a once
per second dataset into one of these algorithms and then a
subset of the same dataset with only every 15th sample, one
might think the subset would be processed faster, but with
diminished accuracy. However, since more time has gone
by between each sample, the corresponding sampling error
region is larger which results in a larger road network sub-
graph to consider. So the challenge then becomes effectively
choosing a subset of the original trajectory, to achieve higher
performance, while preserving the advantage of a high sam-
pling rate.

When we consider the constraints of driving in relation
to the MM problem, one thing becomes obvious, that is we
cannot change the road we are on without reaching an in-
tersection. In the digital representation of the road network
these are sometimes called transition nodes. Since each sam-
ple has a temporal component we can deduce that for a given
sub-trajectory, if the first and last samples are matched to
the same road, and there are no transition nodes within the
subset of the road network bounded by the error region of
the sub-trajectory (there are no intersections near the sub-
trajectory), then all of the sub-trajectory must have been
sampled from the same road (or the driver ran off the road).
The SLAMM approach is based on the above analysis.

4.2 SLAMM Overview
Conceptually, SLAMM works by breaking a trace into seg-

ments of contiguous samples and then matching each seg-
ment to an arc in the road network. To accomplish this,
each segment must have a one to one correspondence with
an arc in the network, that is, each segment represents the
time the driver spent on no more than one arc. To create
these segments, samples are identified along the trace that
will be used as break points, these samples are referred to
as critical samples. Figure 4 illustrates this process.

Figure 4: High Level Illustration of SLAMM

In practice, the process is divided into a preprocessing step
and three phases, Trace Buffer (TB) based Arc Filtering,
Critical Sample selection and matching, and trace segment
verification. A detailed explanation for each phase follows.

4.3 Preprocessing Phase
Consider the Skyhook Wireless AP dataset, the trajectory

data was collected at a static rate of one sample per second.
However, gaps occurred during collection due to satellite
signal loss or a driver taking a break. Thus, the SLAMM
preprocessing step breaks the daily trajectories into subsets
(traces) where these gaps do not occur. A trace with 1001
samples would have taken exactly 1000 seconds. We argue
that removing the gaps is a natural way to segment the
trajectories. The gaps that exist from satellite signal loss are
often preceded by increasingly worse measurement error, so
even if the gap was only for a second, it is often an indicator
of high measurement error to come. The gaps that exist
from drivers taking breaks are clearly good places to start
and stop a trace as the driver may travel from one location
to another during the gap which would have the same effect
as missing roads on the algorithm.

4.4 Trace Buffer based Filtering
In SLAMM development, the first filtering technique con-

sists of the trace buffer generation and the arc filtering. The
goal of the trace buffer (TB) is to identify the nodes and arcs
in the road network that are candidates for matching a trace.
The key challenge is to construct a TB that can minimize
the number of nodes and arcs that are the initial parameters
to SLAMM without missing any that are relevant.

A TB is a polygonal region that bounds the error for a
single trace. Ideally this region should be large enough to
intersect all potentially relevant nodes and arcs for matching
the trace but small enough to minimize the bounded error
region.

Theoretically, the TB can be described as the Minkowski
sum of a line interpolating the samples of the trace and a
disc with a given radius. The Minkowski sum of two sets
S1 ⊂ R2 and S2 ⊂ R2, denoted by S1 ⊕ S2, is defined as

S1 ⊕ S2 := {p + q : p ∈ S1, q ∈ S2}, (4.1)

where p + q denotes the vector sum of the vectors p and q.
Specifically for the TB case, we denote S1 as a set of line

segments and S2 as a disc, and visualize the Minkowski sum
as the union of copies of S2 as its center moves along S1.
The road network database is then queried to retrieve only
those arcs that intersect the TB. Figure 5 illustrates the
overall process. The results of this query are then passed
onto the next phase of SLAMM.

4.5 Critical Sample Selection and Matching
In general, the next phase will break the trace up into

contiguous segments. The goal is for each segment to have a
one to one correspondence with the arc to which it will ulti-
mately be matched. By segmenting first and then matching
we, are able to match the entire segment without considering
all of the samples therein, for most cases. We start this pro-
cess by identifying the critical samples, on which the trace
will be segmented. Once we have defined the critical sam-
ples and segmented, we next match the beginning and end
of each segment to an arc. This is done by first establishing
a set of candidate arcs and then weeding them out through

Figure 5: TB Filtering

a process later referred to as ellipse matching. Finally we
pass the matched samples to the last phase.

Concretely, this phase consists of three steps, critical sam-
ple selection, candidate arc selection and finally matching
the critical samples to the candidate arcs.

4.5.1 Critical Sample Selection
Critical samples are those samples along the trace that

represent a transition from one road segment to another.
Figure 6 illustrates the critical samples near the transition
nodes. The intuition behind the finding and matching of

Figure 6: Find the samples closest to each transition

node

critical samples first is the following. Given that each sam-
ple has a time stamp, we can deduce that for a given sub
trajectory, if the first and the last samples are matched to
the two end nodes (transition nodes) of the same road, and
there are no transition nodes within the subset of the road
network bounded by the error region of the sub trajectory,
then all the sub trajectory must have been sampled from the
same road. Ultimately the critical sample selection will have
great impact on how many samples need to be considered
to make a match, thus influencing the runtime performance
of SLAMM. We develop a two stage process to identify the
critical samples, first we identify the node passes for each
transition node then we find the critical sample for each
node pass.
The Node Pass. The first step is to define a set of node
passes for each node. Simply put, a node pass represents
a vehicle crossing an intersection once. A node can have
multiple node passes because a drive can pass through a
transition node multiple times during the war-driving pro-
cess. Figure 10 shows two examples of the node passes of
the transition node. The transition node in the left figure
has multiple corresponding node passes while the node on
the right figure has only one node pass.

We define a node pass as a contiguous sub trace S of a

Figure 10: Node Pass Examples

trace T , which is within a radius r from the given node P .
They are contiguous in that no two adjacent samples in a
list of samples sorted on time, are more than the sampling
rate ∆T apart.

Let the trace T be a set of location samples. S is said to
be a contiguous sub trace of T if the following conditions are
met:

1. ∀ Si, Si+1 ∈ S, Si, Si+1 ∈ T

2. ∀ Si, Si+1 ∈ S, Si+1 - Si = ∆T

Now we define a node pass as follows. Let P denote a
transition node, r is the radius of node P , and S denote a
contiguous sub trace of a trace T . We say that the subset
S is a node pass of P with respect to radius r if and only if
for any Si in S, d(Si,P) <= r.
The Critical Sample. Once the node passes have been
defined, the next step is to assign a critical sample for each
node pass. The critical sample for a given node pass is sim-
ply the sample that is closest to the corresponding node.

Let S be a node pass and P be the corresponding transi-
tion node. The critical sample Sc is defined as

Sc = min
Si∈S

(d(Si, P))

The Algorithm. In our implementation, the trace data
structure stores an r-tree internally to allow for fast queries
on the samples within that trace. When critical samples are
to be determined for a given node, first the trace is queried
for the samples that are within the given radius from the
node. Then the returned samples are sorted on time to
ensure they are in chronological order. This sorted list of
samples is then broken up into separate contiguous lists or
node passes as described above. Finally, for each node pass,
the Euclidean distance from each sample to the given node
is measured and the closest is stored in a temporary list of
critical samples, specific to the given node, to be processed
later. The pseudo-code is shown in algorithm 1.

Algorithm 1 findCriticalSamples(T ,r,p)

Input: Trace T , radius r, Node p
Output: Critical Sample List

1: query T ′s RTree for samples S ∈ T where dist(Si, p) <=
r

2: sort S on time
3: break S into sublists of contiguous samples (split S where

gaps in time exist)
4: for all contiguous sublist s do
5: add sample in s closest to p to criticalSampleList
6: end for
7: return criticalSampleList

Figure 7: Samples followed A,B or D Figure 8: Example candidate arc selection Figure 9: Error Ellipse

Once all of the critical samples have been identified SLAMM
moves on to the matching step.

4.5.2 Candidate Arc Selection
The second step is to select a set of candidate arcs for the

critical samples. As we’ll see, each critical sample will have
its own set of candidate arcs. The overall goal of candidate
arc selection, at this stage, is to select all arcs that could
have possibly been involved in the potential arc transition
represented by the given critical sample.

One might think that simply using the arcs adjacent to
the node that created the critical sample would be sufficient,
however, there is no guarantee that the critical sample actu-
ally represents a transition on the node that created it. The
node could have simply been near the arc from which the
critical sample was recorded. Figure 7 shows an example
of this. The trace segment could have followed arcs A and
B via node 1 or it could have followed arc D. Since D is not
adjacent to node 1 simply selecting the adjacent nodes could
potentially leave out the correct arc. For this reason, we use
a critical sample buffer based approach.

With critical sample buffer candidate arc selection we se-
lect those arcs that are within some radius r from the critical
sample as candidates. This is illustrated in figure 8. In the
example we see that arcs A,B,C and D are within r from the
critical sample and are therefore the candidate arcs.

Clearly the choice for the value of r is important. Too
small and it may not include the actual arc and of course an
unreasonably large value would select too many. However,
since the candidate arcs will be filtered later, too large is
better than too small. In our implementation we use the
value used for the TB width. This ensures that the arcs
adjacent to the node that created the critical sample are
included.

4.5.3 Ellipse Match
Ellipse matching is the final step of phase two. Its goal is

to further filter the candidate arcs. Given a critical sample
and the corresponding candidate arcs, the ellipse match will
follow the trace in both directions, starting from the critical
sample, weeding out candidate arcs as it goes along until,
ideally, only one arc is left for each direction. Figure 11
illustrates these steps.

The error ellipse, shown in figure 9, is a common tech-
nique for bounding sampling error proposed by [14]. By
sampling error, we are referring to the uncertainty of the
location of a moving object in between position samples.
Concretely, an ellipse is defined by two consecutive position
samples, P1 and P2, in the time interval [t1, t2] and a given
maximum speed Sm that the object can travel. The ec-
centricity 2c is the Euclidean distance between P1 and P2.
The length of the major axis 2a is calculated as Sm(∆t), the

maximum distance the object can travel, and the minor axis
2b is calculated as

√
(2a)2 − (2c)2. The resulting ellipse is a

region that bounds all of the possible paths that could have
been followed between P1 and P2. The advantage of this
approach is that it guarantees a bounded sampling error.
The disadvantage is that it does not take measurement er-
ror into account. Though this may not matter in the case of
low sampling rates, datasets with higher sampling rates may
risk not overtaking the measurement error. That is, with a
high sampling rate, the boundary of the region created by
the simple error ellipse may actually be closer to the samples
than the measurement error estimate. To address this, [15]
proposed the thickened error ellipse. This is a simple error
ellipse and the Minkowski sum of the measurement error.

Figure 11: Ellipse Filter

Ellipse Match Algorithm. As mentioned, each of the
critical samples will be a starting point for this step of the
algorithm which proceeds as follows. For each direction
along the trace, an error ellipse is generated from the critical
sample St to the next sample in that direction. So for the
positive direction, St and St+1 are used as parameters to
the error ellipse. Then each arc in the candidate arc list is
checked to intersect the ellipse. If an arc does not intersect
the ellipse, that arc is removed from the list. This proceeds
with St+1 and St+2 ... At each iteration, for each direction,
the following three cases are considered:

1. Only one arc is left in the candidate arc list. In this
case the remaining arc is returned as the chosen arc.

2. More than one arc is left in the resulting ellipse. In this
case a node collision check is made. A list of nodes is
passed into the ellipse match which contains all of the
nodes in the graph obtained from the TB phase. Each
time this case is reached, the nodes are checked to see
if any intersect the ellipse.

• If there is a node collision: the distance from each
sample considered so far to each arc remaining in
the candidate arc list is summed and the arc with
the shortest distance is returned as the selected
arc.

• If there is not a node collision: continue with el-
lipse for next iteration.

3. Zero arcs are left in the candidate arc list, restart di-
rection with a thickened ellipse.

Figure 12 shows an example of the first two cases. On the
left the ellipses were generated until another node was hit
because two arcs intersected each ellipse along that portion
of the trace. The right shows the best case where only one
arc intersected the ellipses after only a few samples, in each
direction.

In case three, the simple error ellipse does not intersect
any arc resulting in no arc being chosen. This is often due
to the ellipse simply not being large enough to bound all of
the error introduced by the components of a given step. In
this case the process is repeated from the beginning using a
thickened ellipse instead of the simple ellipse. As discussed
earlier, the simple error ellipse only bounds sampling er-
ror and does not take measurement error into account. By
thickening the ellipse we are simply adding the measurement
error into the bound.

Until now, the goal of the filters has been to ensure that no
potential candidate arcs are missed. In the ellipse match fil-
tering, our goal changes to resolve obvious matches quickly.
Since much of the data is near the correct path, a tighter
bound can effectively test this. At a high sampling rate,
like ours, the sampling error, and thus the bound, tend to
be small. Those instances where this test fails, due to high
sources of error, (ie: measurement, map,...) the final phase is
designed to catch by checking the consistency of the match-
ing decisions made in this step.

Figure 12: Best and worst case of the node pass step

Here we present the complete algorithm. For each critical
sample:

We begin the ellipse based match. For each direction:

1. First we generate an ellipse using the critical sample
and the next sample in the current direction. So for

clarity we’ll say that if Si is the current sample being
considered then i = 0 for the critical sample and we
start by generating an error ellipse with Si and Si+1

(or Si−1 for the negative direction).

2. Then we iterate over the candidate arc list checking
whether each arc intersects the current error ellipse. If
the arc does not then it is removed from the list.

3. Next we perform our case check, checking number of
arcs in candidate arc list

(a) Case 1: There is exactly one, that arc is returned
as the chosen arc for this direction of the current
critical sample.

(b) Case 2: There are more than one, the distance of
Si to each remaining arc is added to a running
sum for each arc.

(c) Case 3: No arc remains, then the process is restarted
with the thickened ellipse. In the infrequent case
that no arcs remain and the ellipses have already
been thickened, no arc is chosen and the choice is
left to the final step explained later.

4. Then we check for transition nodes that may intersect
the ellipse. In our implementation all of the nodes
that remain, after the TB filtering step, are stored in
an r-tree for fast query.

(a) Since this is the first ellipse, any nodes that in-
tersect are excluded from future checks for this
direction of the current critical sample. This is
because any node intersecting the first ellipse is
likely the node from which the driver transitioned.

(b) If this is not the first ellipse and a node is inter-
sected that was not excluded by the first ellipse,
then the arc with the lowest summed distance to
the considered samples is returned as the chosen
arc.

4.6 Trace Segment Verification
The final phase consists of analyzing the ellipse match

results to make the trace segment assignments, finalizing the
chosen arc and applying distance-based quality estimates to
each trace segment match.

Figure 13: Example Trace Segment

4.6.1 Trace Segment
We define those samples that temporally fall between crit-

ical samples as trace segments. Ideally, a trace segment will
be a contiguous set of samples that have been collected on

the same road. Intuitively a trace segment is all of the sam-
ples collected from the time the driver began traveling on a
road to the time the driver left that road. For example, in
Figure 13, the left image shows a portion of a trace with
the corresponding critical samples, the right image shows a
single trace segment and the corresponding matched sam-
ples.

4.6.2 Final Arc Selection
Up until this point we have discussed critical samples as

independent transitions, not necessarily related to one an-
other. Here it is important to recognize their relationship
as endpoints to trace segments. That is, the samples in the
positive direction of one critical sample would be the be-
ginning of a trace segment. The samples in the negative
direction of the next critical sample would be the end of the
same trace segment. As we have discussed, each direction
of each critical sample has been evaluated, which means we
have an initial arc selection for the beginning and end of
each trace segment. Our task now is to determine if these
selections are consistent, and if they are not, to make a final
decision as to which arc each trace segment will be matched.

Figure 14: Ideal case in final arc selection

To accomplish this our algorithm iterates over the critical
samples as follows. For each critical sample Ci, if the pos-
itive direction Ci pos chooses the same arc as the negative
direction of the next critical sample Ci+1 neg then we ap-
point this as the chosen arc Ac for the trace segment. Figure
14 illustrates this scenario. This is the ideal case and often
means that we have made our match without considering all
of the samples in the trace segment. In the less frequent case
that Ci pos and Ci+1 neg don’t agree, we employ our TB con-
cept but localized to the given trace segment. Specifically,
we generate a TB for the trace segment and check for any
arcs that are contained within. This will itself result in three
simple cases

1. Only one arc is contained: In which case it is assigned
as Ac

2. There are multiple arcs contained: In this case the
trace segment is matched to each, and the Hausdorff
distance is taken from the raw trace segment to each
matched trace segment. Ac is then assigned as the arc
that produced the smallest distance. This scenario is
illustrated in figure 15.

3. There are no arcs contained: In this rare case we
choose Ac from the arcs that were originally assigned
to Ci pos and Ci+1 neg in the same manner as in the
previous case.

As may have been noticed, the first and last trace seg-
ments are only associated with one critical sample each. For
the first, the arc chosen for C1 pos is set as Ac, and similarly,
Cn neg for the last. In either case, if no arc was selected in

Figure 15: Trace segment buffer fallback

the ellipse match phase, the localized TB is applied to the
corresponding trace segment, as described above.

4.6.3 Quality Estimate
The final step in SLAMM is to physically snap the samples

of each trace segment to its chosen arc. The Vertex Haus-
dorff distance of the original samples to the snapped samples
is then measured and assigned to the trace segment.

The Vertex Hausdorff distance is a fairly straight forward
version of the Hausdorff distance. In this implementation,
the distance from each matched sample to every other origi-
nal sample is measured and the minimum distance is stored,
the Hausdorff distance is the maximum of these minimum
distances. This distance is then the measure of the match.
Once this is complete, a quality threshold can be applied to
further evaluate the overall matches. This is explained in
greater detail in the evaluation.

5. EVALUATION
This section reports the experimental evaluation of the

SLAMM approach over a sample of data from the real world
dataset. We conduct three sets of experiments. The first
set compares the speed of SLAMM, LAMM, and DMM.
The second set will compare the accuracy of the algorithms.
Finally, we evaluate the effectiveness of our trace segment
quality estimate. The system was implemented in Java us-
ing JTS topology suite version 1.10. All experiments were
performed on a laptop with 2.4Ghz Intel Centrino Duo pro-
cessor with 1GB of ram allocated to the JVM.

5.1 Running Time
To compare the speed of the three algorithms we mea-

sure the run time of each after the the road network has
been queried. For DMM and LAMM, we also compare their
performance with and without the benefits of the TB. In
the case of no TB, the road network within 10 KM of the
given trace was used. In the tests that did use the TB, a
width of 60 M was used for all algorithms. SLAMM was
designed and implemented specifically for use with the TB
so its performance was not measured without it.

The dataset consists of ≈ 4.3 million samples broken into
1,147 traces that were collected between January 2006 and
April 2008. The size of the traces range from 1,000 to 22,000
samples each. To select the data, seven driver id’s were
picked at random and their corresponding traces were the
one’s queried.

Figure 16 shows the results of the experiments where
DMM and LAMM did not have the benefit of the TB. As
expected SLAMM outperforms LAMM and DMM signifi-
cantly. This test is mainly to show how effective the TB
based filtering can be to any algorithm. This becomes clear
with our next test, the results of which are shown in figure
17. Note that the SLAMM values do not change between the
two graphs. Surprisingly, SLAMM actually outperformed
DMM in four of the seven datasets. The dataset where

Figure 16: Speed without TB Figure 17: Speed with TB Figure 18: Accuracy

SLAMM did worse can be explained by the larger number of
small traces. Overall, DMM was slightly faster with smaller
traces but much slower than SLAMM with larger traces. As
expected, SLAMM significantly outperformed LAMM on all
traces.

5.2 Accuracy
As with most MM evaluations, accuracy is difficult to eval-

uate. This is because the only true way to measure the ac-
curacy of a MM result is to know which road the driver was
actually on.

To measure the accuracy, we hand-matched six traces
picked at random from the ≈ 4.3 million samples used in our
evaluation. A total of 34,543 samples were hand-matched,
of those, 2,343 did not have a road in the road network.
The samples without a corresponding road were left out of
the accuracy comparison. Figure 18 shows the percent of
the samples that were matched correctly for each trace with
SLAMM, LAMM and DMM. SLAMM proves more accurate
than LAMM and DMM for all six traces. In traces one and
six, DMM actually has better results than LAMM. After in-
specting the traces, this appears to be caused by LAMM’s
sensitivity to missing arcs.

5.3 Error Identification
As described in Section 4.6.3, the quality estimate of a

trace segment, defines the reliability of the samples on that
trace segment. Given a reliability threshold, the verifica-
tion step identifies trace segments that exceed that thresh-
old. The idea of this evaluation is to determine how well
the verification phase identified the errors at different values
for the threshold. Table 1 shows the results, at thresholds
of 20, 40, 60 and 80 meters. Percent of error identified is
the percentage of mis-matched samples that fell on a trace
segment greater than or equal to the given threshold. Simi-
larly, percent of missing road identified, is the percentage of
the samples with no corresponding road in the graph. Per-
cent redundant is the percentage of all of the samples that
fell on a trace segment greater than or equal to the given
threshold, regardless of the error classification. This would
represent how many samples would have to be analyzed in a
subsequent procedure. Ideally, a threshold would be selected
that minimizes the percent redundant while maximizing the
identified errors.
Application of Error Identification Feature.

We conclude the evaluation with a sample application that
leverages the error identification features. At this point, we
assume that SLAMM has finished processing the data and
now all of the arcs, that had matching samples, have been
linked to the respective trace segments. The trace segment
to arc relationship has stored the aforementioned quality es-
timate. Our simple application, illustrated in figure 19,
generates a grid, the boundary of which contains the data
to be analyzed. Each grid cell is assigned the mean quality
metric for all of the arcs that it intersects. As an example,
if a cell intersects three arcs, and each of the three arcs had

two trace segments matched, then the cell’s value would be
the average of the six quality estimate values. In figure 19,
the grid and arcs are shown in the top right. The top left
image zooms into a cell with a low value and, as one would
expect, the samples appear to have low GPS measurement
error. The lower images zoom into an area with much higher
values and we see that high measurement error has driven
the values up. In addition to measurement error, this sys-
tem can also identify errors in the road network, such as
missing arcs, and even occasions when a driver cuts through
a parking lot or pulls into a drive-through for a snack. All
of these sources of error are quite frequent with large war-
driving datasets and can easily be identified with SLAMM’s
error identification features.

hhhhhhhhhhhMetric
Threshold (M)

20 40 60 80

% errors identified 94.38 65.29 52.81 42.11
% missing road identified 100 79.47 56 48.89

% redundant 43.23 19 11.61 9.13

Table 1: Error Identification Results

6. RELATED WORK
Ochieng, Quddus and Noland [13] provide a good overview

of various MM algorithms, while Wenk, Salas, and Pfoser [15]
provide an incremental MM algorithm that effectively trades
accuracy for speed of computation. There are several exam-
ples of systems that use global or look-ahead knowledge [10,
11]. These approaches provide the basis on which our re-
search is built with a focus on providing an efficient MM al-
gorithm with high accuracy for large scale wireless position-
ing systems. In [7], Chawathe proposed a sample look-ahead
approach with an incremental algorithm. The fundamental
difference between Chawathe’s approach and ours is that
our trace segments are defined by the surrounding nodes
in a global manner while Chawathe segments a trajectory
incrementally using a predifined interval. Our SLAMM ap-
proach can be viewed as a careful hybrid of global MM and
incremental MM. The unique feature of our approach is the
three level selective filtering based curve-to-curve fitting al-
gorithm, which improves the speed of MM with the selection
of critical samples and the error-bounded trace buffers, while
enhancing the accuracy and reliability estimation with selec-
tive look-ahead of both samples and matching arcs. By using
a three-level progressive filtering, SLAMM is able to signifi-
cantly speed up the execution time compared to LAMM [10]
while maintaining accurate results.

7. CONCLUSION
In this paper we have presented SLAMM, a selective look-

ahead MM approach, with three unique features. First, it
employs the trace buffer filtering technique to remove those
road network segments that are irrelevant to the given loca-
tion datasets in terms of MM. Second, it promotes selective

Figure 19: Sample application of error identification features

look-ahead of both samples and relevant arcs in conjunction
with error bounding techniques to identify and match criti-
cal location samples to the road network before matching the
rest. Third but not the last, it develops verification based
matching technique that can match non-critical portions of
the AP location datasets by identifying and isolating poten-
tially bad segments. We compare the speed and accuracy
of SLAMM to the existing look-ahead MM algorithm from
a real dataset of 70 million location samples, and show that
the SLAMM three-level progressive filtering based MM ap-
proach is accurate and significantly faster than traditional
MM approaches.

8. ACKNOWLEDGMENTS
This work is partially supported by grants from NSF CISE

NetSE program, CyberTrust program, and a grant from In-
tel research council. Our special thanks are due to Skyhook
Wireless for their invaluable datasets and the discussions
with Farshid Alizadeh-Shabdiz, the Chief Scientist for Sky-
hook Wireless.

9. REFERENCES
[1] Skyhook wireless. http://skyhookwireless.com, 2009.

[2] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching
planar maps. Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms, pages
589–598, 2003.

[3] D. Bernstein and A. Kornhauser. An introduction to
map matching for personal navigation assistants. New
Jersey TIDE Center, 1996.

[4] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On
map-matching vehicle tracking data. Proceedings of
the 31st international conference on Very large data
bases, 2005.

[5] Simon Byers and Dave Kormann. 802.11b access point
mapping. Commun. ACM, 46(5):41–46, 2003.

[6] H. Cao and O. Wolfson. Nonmaterialized motion
information in transport networks. In In Proceedings
of Int. Conf. on Database Theory (ICDT)., 2005.

[7] S. S. Chawathe. Segment-Based map matching. In
2007 IEEE Intelligent Vehicles Symposium, pages

1190–1197, 2007.

[8] J. S. Greenfeld. Matching GPS observations to
locations on a digital map. 81th Annual Meeting of the
Transportation Research Board, 2002.

[9] J. Hightower, A. LaMarca, and I. E. Smith. Practical
lessons from place lab. IEEE Pervasive Computing,
5(3):32–39, 2006.

[10] Kipp Jones, Ling Liu, and Farshid Alizadeh-Shabdiz.
Improving wireless positioning with look-ahead
Map-Matching. In MobiQuitous, pages 1–8, 2007.

[11] W. Kim, G. I. Jee, and J. G. Lee. Efficient use of
digital road map in various positioning for ITS.
Position Location and Navigation Symposium, IEEE
2000, pages 170–176, 2000.

[12] J. Letchner, D. Fox, and A. LaMarca. Large-scale
localization from wireless signal strength. In
Proceedings of the National Conference on Artificial
Intelligence, 2005.

[13] W. Y. Ochieng, M. A. Quddus, and R. B. Noland.
Positioning algorithms for transport telematics
applications. Journal of Geospatial Engineering,
6(2):10, 2004.

[14] Dieter Pfoser and Christian S. Jensen. Capturing the
uncertainty of Moving-Object representations. In
Proceedings of the 6th International Symposium on
Advances in Spatial Databases, pages 111–132.
Springer-Verlag, 1999.

[15] C. Wenk, R. Salas, and D. Pfoser. Addressing the
need for Map-Matching speed: Localizing global
Curve-Matching algorithms. Proceedings of the 18th
International Conference on Scientific and Statistical
Database Management, 2006.

[16] C. E. White, D. Bernstein, and A. L. Kornhauser.
Some map matching algorithms for personal
navigation assistants. Transportation Research Part C:
Emerging Technologies, 8:91–108, 2000.

[17] H. Yin and O. Wolfson. A weight-based map matching
method in moving objects databases. Proceedings of
Int. Conf. on Scientific and Statistical Database
Management., 2004.

	Introduction
	War-Driving Challenges
	Map Matching
	Distance Map Matching
	Look-Ahead Map Matching (LAMM)

	Selective Look-Ahead MM (SLAMM)
	Design Principles
	SLAMM Overview
	Preprocessing Phase
	Trace Buffer based Filtering
	Critical Sample Selection and Matching
	Critical Sample Selection
	Candidate Arc Selection
	Ellipse Match

	Trace Segment Verification
	Trace Segment
	Final Arc Selection
	Quality Estimate

	Evaluation
	Running Time
	Accuracy
	Error Identification

	Related Work
	Conclusion
	Acknowledgments
	References

